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Abstract In this paper, we give a comprehensive error analysis for an ap-
proximate solution method for the generalized eigenvalue problems arising for
instance in the context of electronic structure computations based on den-
sity functional theory. The solution method has been demonstrated to excel
as compared to established solvers in both computational effort and scaling
for parallelization. Here we estimate the improvement provided by our pro-
posed subspace method starting from the initial approximations for instance
provided in the course of the self-consistent field iteration, showing that in gen-
eral the approximation quality is improved by our method to yield sufficiently
accurate eigenvalues.
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1 Introduction

In this paper, we discuss an approximate numerical solution method for the
generalized eigenvalue problems which arise in each step of the fixed point
iteration (commonly referred to as the self-consistent field (SCF) cycle) em-
ployed for the solution of the Kohn–Sham equations [10] of density functional
theory [8] in large scale electronic structure computations [15,19,20].
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After discretization by augmented plane waves plus local orbitals [3,4,16]
this implies the solution of large generalized eigenproblems with symmetric
matrices. For most applications not all eigenvalues need to be computed,
but commonly only the lowest 3–10% of these are needed. This suggests the
use of an iterative subspace method for the approximation of the eigenvalues
and eigenvectors, which only computes a fraction of the eigensystem which is
of practical relevance. The algorithm discussed here was implemented in the
WIEN2k code [4] and found to outperform previous solution methods in both
computational effort and parallelization, see [2].

The iterative method for the diagonalization of generalized eigenproblems
implemented formerly in the WIEN2k code was a blocked version of the David-
son method [5,6] which was introduced in [21]. Iterative methods for the prob-
lem at hand are also discussed in [1,11–13,17,24,27]:

In [27], the method of RMM-DIIS (residual minimization/direct inversion
in the iterative subspace) is proposed and compared with the Davidson and
Block Davidson methods. The latter has the disadvantage that the doubling
in the dimension of the search space is prohibitive for large initial subspaces.
Therefore the RMM-DIIS method is claimed to have the advantage that only
matrices of the size of the number of previous iteration steps are necessary.
However, in its original version the method is fundamentally sequential in na-
ture which the authors recognize as a major drawback [27], and which in the
light of the development of parallel and grid-enabled versions of the WIEN2k
code makes this approximate diagonalization unattractive. Recently, a refor-
mulation of RMM-DIIS [18] has brought this method into the scope for a
parallel implementation, however. Another interesting approach was put for-
ward in [26] where preconditioners similar to ours (based on approximations
to the inverse of (H − λS)) were tested. However, these methods are designed
for sparse matrices.

A comparison with several other methods shows that (disregarding com-
putational cost) the block Davidson method displays the best improvement in
accuracy per iteration step due to the doubling of the search space [27]. Our
aim is to avoid this doubling of the subspace.

Ref. [24] gives an overview of the state of the art of iterative diagonalization
at that time, and demonstrates that a new preconditioned conjugate gradient
method compares most favorably with conjugate gradients, steepest descent
and imaginary time propagation. The VASP code [13], which is a highly ef-
ficient plane wave pseudopotential code, uses the RMM-DIIS method of [27]
in a variant proposed in [17]. They claim this method to be superior for very
large problems [11] if an unblocked, band-by-band iteration is used.

In more recent work, other subspace methods are put forward. [29] gives
a method where subspace doubling is required only in the first step of the
iterative solution and where parallelization is based on a decomposition of the
physical domain. Since our method has a more general scope and only uses one
iteration step, we do not consider this alternative. In [7] a variant of the power
method realized in a subspace is introduced which does not offer the safeguard
of working in a larger subspace and whose parallelization is not discussed.
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In the present paper, we consider a blocked subspace method which is
motivated by the code structure of WIEN2k and parallelization issues [2]. Both
aspects suggest to refrain from a sequential “band–by–band” computation.

Our approximate diagonalization is motivated by the fact that the David-
son method previously implemented in the WIEN2k code [21] was recognized
as unsatisfactory when the basis set was changed from the standard LAPW
to the APW+lo basis set [16]. Apparently, the underlying discretization, the
importance of non-diagonal terms (the local orbital contribution to the plane
wave basis) and the adaptive basis set (the basis set changes slightly in the
course of the SCF cycle) renders the preconditioning with only the diagonal
elements diag−1[H − λS] inefficient. Our new method is motivated by the im-
provements promised by the Jacobi-Davidson method [22,23,25] as compared
to the original Davidson method [6]. However, application of the subspace
expansion from the Jacobi-Davidson method seems prohibitively expensive,
hence we propose a simplification which uses an approximate computation of
the subspace expansion related to an iterative solution of the associated linear
system of equations. Furthermore, it was demonstrated in [2] that our method
is superior to full diagonalization in efficiency and scales very well in a par-
allel implementation. We stress that the success of the method is linked to
the structure of the problem considered. While the accuracy and efficiency is
excellent for the problems solved in the WIEN2k code [2], we do not claim
that it will excel for problems from other applications and thus does not nec-
essarily represent a general purpose method. However, the present paper gives
a general statement on the error behavior in Theorem 1 which is independent
of the application problem.

In the course of the SCF iteration, good initial guesses are available for
the approximation of the eigensystem of the generalized eigenvalue problems,
since the problem data only changes moderately in the course of the iteration.
Thus, in each iteration step it is sufficient to improve the numerical solution
to an extent such that the required accuracy is achieved. In this paper, we are
going to estimate the factor by which the approximation is improved by the
update defined by our method. Numerical experiments show that indeed the
bounds are sharp.

The outline of the paper is as follows: We introduce our subspace method
to improve an initial approximation to the solution of a generalized eigenvalue
problem in Section 2. In Section 3 we give the results of our error analysis,
which estimate the factor by which the error of the initial approximation
is reduced by applying one step of our method. Section 4 gives numerical
experiments, showing that our error bounds are sharp and that the results also
pertain to eigenvalue problems from real life applications. Finally, Appendix A
contains the technical proof details of our main theorem from Section 3.
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2 The Approximation Algorithm

We want to compute approximations to eigenvectors corresponding to the m
lowest eigenvalues of the generalized eigenproblem

HX = SXΛ, (1)

where the Hamiltonian matrix H ∈ Cn×n is Hermitian (but not necessarily
positive definite), the overlap matrix S ∈ Cn×n is Hermitian and positive
definite, and Λ is a diagonal matrix containing the (real!) eigenvalues. First,
we specify the algorithm employed in the computation of the eigensystem.
We consider only the real case (H,S ∈ Rn×n symmetric) for simplicity. The
adaptation of the algorithm and the analysis for the complex case is straight-
forward.

– Input:

Y = [y1, . . . , ym] ∈ Rn×m.

Usually these are approximations to eigenvectors which were computed in
the last SCF cycle.

– Compute the Ritz values (Rayleigh quotients)

ϑj =
yTj Hyj

yTj Syj
, j = 1, . . . ,m. (2)

– Set up the search space [Y Z] ∈ Rn×2m with

zj = H−1(H − ϑjS)yj , j = 1, . . . ,m. (3)

– Set up the reduced problem

H̃V = S̃V Γ, (4)

where

H̃ = [Y Z]TH[Y Z] =

[
Y THY Y THZ
ZTHY ZTHZ

]
(5)

and

S̃ = [Y Z]TS[Y Z] =

[
Y TSY Y TSZ
ZTSY ZTSZ

]
. (6)

– Compute eigenvectors V1:m of (4) corresponding to the lowestm eigenvalues
γ1 ≤ · · · ≤ γm using, e.g., appropriate routines from LAPACK. We may
assume that V1:m is orthonormal with respect to S̃, i.e., V T1:mS̃V1:m = Im.

– Compute new approximations

Ynew = [Y Z]V1:m (7)

to the eigenvectors of (1).
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For practical computations, we have to take the possibility into account
that in (4) the matrices H̃, S̃ are (nearly) singular, so that the reduced eigen-
problem (4) admits no unique solution. For example this happens if some of
the initial guesses yj (almost) coincide with the corresponding exact eigen-
vectors of (1), so that the corresponding vectors zj are (almost) zero. Our
work-around is that if zj ≈ 0 (a condition which is of course easy to check) we
simply delete the corresponding columns yj , zj in Y and Z, respectively (and
take yj as the computed result for the j-th eigenvector). It is very unlikely that
the set of columns of [Y Z] is linearly dependent other than by the vanishing
of some column zj . We exclude the pathological cases in our analysis and will
always assume that [Y Z] has full rank 2m. Furthermore, we omit the case of
multiple or vanishing eigenvalues for simplicity of the analysis.

The algorithm described above is designed to replace the Davidson method
[6] employed previously [21], where (3) is replaced by

zj = diag−1(H − ϑjS)(H − ϑjS)yj , j = 1, . . . ,m. (8)

3 The Main Result

Let X ∈ Rn×n and Λ = diag(λ1, . . . , λn) with λ1 < · · · < λn be an exact
solution of (1). Due to the structure of (1), the columns of X are orthogonal
with respect to S, and without restriction of generality we may assume

XTSX = In, (9)

where In denotes the n×n identity matrix. Clearly for (3) to be well-defined,
we have to assume that H is non-singular, or equivalently that all eigenval-
ues λj are non-zero. For the analysis we further assume that all “discarded”
eigenvalues are greater than zero,

0 < λm+1 < · · · < λn,

and that the moduli of the remaining eigenvalues are smaller than λm+1,

−λm+1 < λ1 < · · · < λm < λm+1.

These properties can always be enforced by changing the system matrix H →
H+γS, with suitable γ ∈ R (this shifts the eigenvalues, but leaves the eigenvec-
tors unaltered). Note that if all eigenvalues λj are distinct, then X is uniquely
determined up to multiplication from the right by a diagonal matrix with en-
tries ±1. At one point in the following analysis we will have to assume in
addition to the eigenvalues being distinct that these are even well separated.
More precisely, if O(ε) is the order of the error ∆Y of the given approximate
solution

Y = X1:m +∆Y, (10)
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Fig. 1 Bounds for the convergence rates ‖∆ynew,j‖XT S/‖∆yj‖XT S as given by Theorem 1,
eqs. (14) (solid line) and (15) (for the special case m = 1, dashed line).

where X1:m is the matrix of the first m columns of X, such that ∆Y can be
represented in the basis X as

∆Y = εXD, D = O(1), D ∈ Rn×m.

then
λj+1 − λj = O(1), j = 1, . . . , n− 1. (11)

This assumption is always valid if the SCF iteration is sufficiently converged
such that ε is small.

The error of the new approximation

Ynew = X1:m +∆Ynew (12)

is analogously represented as

∆Ynew = εXDnew. (13)

Our goal is to derive bounds for ‖dnew,j‖ in terms of ‖dj‖ where dnew,j and
dj (j = 1, . . . ,m) denote (the relevant parts1 of) the columns of Dnew and
D, respectively. Then, bounds for the new error ‖∆ynew,j‖XTS in terms of the
old error ‖∆yj‖XTS in the norm ‖ · ‖XTS defined by ‖u‖XTS = ‖XTSu‖ =
‖X−1u‖ follow immediately. Here and throughout the paper, ‖ · ‖ denotes
the Euclidean norm for vectors and the spectral norm for matrices. Our main
result is summarized by the following theorem, whose lengthy and technical
proof is relegated to Appendix A.

Theorem 1 The error of the new approximation to the j-th eigenvector can
be estimated in terms of the error of the old approximation by

‖∆ynew,j‖XTS ≤


|λj |
λm+1

‖∆yj‖XTS +O(ε2) for λj/λm+1 ≤ 2
√

2− 2,

1
4
(2−λj/λm+1)

2

√
1−λj/λm+1

‖∆yj‖XTS +O(ε2) for λj/λm+1 ≥ 2
√

2− 2,

(14)

1 Refer to the definitions of kj = dnew,j and dj in Section A.2 of the Appendix.
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j = 1, . . . ,m. In the special case m = 1 it holds

‖∆ynew,1‖XTS ≤
|λ1|
λ2
‖∆y1‖XTS +O(ε2) (15)

even for λ1/λ2 ≥ 2
√

2− 2.

By dividing the bounds from the theorem by ‖∆yj‖XTS we obtain bounds (up
to terms of order O(ε)) for the convergence rates ‖∆ynew,j‖XTS/‖∆yj‖XTS
which depend only on λj/λm+1. These bounds are plotted in Figure 1.

In Section 4.1 below we are going to demonstrate that these bounds are
sharp, i. e. the bend in the curve (14) is indeed observed in some problems.

4 Numerical Examples

4.1 Example 1

We show how an artificial example can be contructed such that the observed
convergence rates corresponding to all eigenvalues λj satisfying−1 < λj/λm+1 ≤
2
√

2− 2, j = 1, . . . ,m uniformly approach the bound (14) of Theorem 1. This
illustrates the sharpness of this bound, and even its optimality in the following
sense: For −1 < λj/λm+1 ≤ 2

√
2 − 2 it is the best possible under all bounds

only depending on λj and λm+1.
We choosem = 100 and n = 3m. We fix the firstm eigenvalues λ1, . . . , λm ∈

(−1, 1)r {0} arbitrarily, the next m eigenvalues λm+1, . . . , λ2m > 1 very close
to 1, and the last m eigenvalues λ2m+1, . . . , λ3m very large. Concretely, we
choose λ1, . . . , λm evenly spaced in [−0.99, 0.99],

λj = −0.99 +
2(j − 1)

m
, j = 1, . . . ,m,

and the other eigenvalues as

λm+j = 1 + jδ1, j = 1, . . . ,m with δ1 = 10−5

and

λ2m+j = jδ−12 , j = 1, . . . ,m with δ2 = 10−11.

For the matrix X of exact eigenvectors we choose a perturbed unit matrix

X =

 Im 0 0
0 αIm βIm
0 −βIm αIm

 with δ3 = 10−4, α =
√

1− δ23 , β = δ3,

which is orthogonal by construction. The data matrices H, S in (1) are then
defined as

H = Xdiag(λ1, . . . , λ3m)XT , S = I3m.
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Fig. 2 Numerically observed convergence rates ‖∆ynew,j‖XT S/‖∆yj‖XT S of Example 1
(dots) and of Example 2 (stars) Also shown is the bound for the convergence rates given by
Theorem 1, eq. (14) (line).

For the initial approximations Y = [y1, . . . , ym] to the exact eigenvectors
X1:m = [x1, . . . , xm] we choose

Y = X1:m + ε

 0
Im
0

 with ε = 10−3,

where both zero sub-matrices are ∈ Rm×m, so that clearly

errj = ‖yj − xj‖ = ε, j = 1, . . . ,m.

The parameters δ1, δ2, δ3, ε have to be carefully chosen (i.e., chosen not too
small) to avoid numerical difficulties like cancellation or overflow. Furthermore,
to make sure that the matrix H is not numerically singular the eigenvalues
should not be chosen too close to zero, which for our evenly spaced eigenvalues
would be the case if m were odd or too large. With our particular setting of
the parameters everything works fine using MATLAB on standard hardware.
Our algorithm computes new approximations Ynew = [ynew,1, . . . , ynew,m] to
the eigenvectors with errors

errnew,j = ‖ynew,j − (±xj)‖, j = 1, . . .m,

where the factor ±1 selects the eigenvector such that ynew,j shows the smaller
error. The numerically observed convergence rates errnew,j/errj , j = 1, . . . ,m
are plotted in Figure 2. Note that for this example the bound given by Theo-
rem 1, eq. (14) is uniformly very sharp as long as λj/λm+1 ≤ 2

√
2−2

.
= 0.8284.

4.2 Example 2

We construct an example where for the eigenvector corresponding to an eigen-
value λj with −1 < λj/λm+1 < 1 our algorithm yields a convergence rate > 1.
Thus, this example illustrates that in fact the error may increase for certain
pathological problem data and hence our estimate in Theorem 1 is sharp also
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in such a situation. In practical computations, see for example [2], such a be-
havior has never been encountered, however. We set n = 5, m = 2, i.e., the
dimensions as small as possible (because for m = 1 Theorem 1, eq. (15) would
guarantee a convergence rate < 1).

We choose

H = diag(λ1, λ2, λ3, λ4, λ5) = diag(0.5, 0.915, 1, 1.5, 10000), S = I5.

Note that λ2/λ3 > 0.9126 > 2
√

2− 2
.
= 0.8284, where x

.
= 0.9126 is a solution

of 1
4
(2−x)2√

1−x = 1 such that the second branch in the piecewise-defined estimate

(14) applies, and such that (14) does not exclude a convergence rate > 1,
i. e., an increase in the approximation error. The exact eigenvectors are the
canonical unit vectors,

X = [x1, x2, x3, x4, x5] = I5.

As the initial approximations to the eigenvectors x1, x2 we choose

Y = [y1, y2] =


1.000000000000000 0.000000000000000
0.000000000000000 1.000000000000000
0.000613604339291 0.000624080400796
−0.000083591341207 0.000780017095933

0.000014803795114 0.000045792831252

 ,
such that the errors of these approximations are

err1 = ‖y1 − x1‖ ≈ 6.194 · 10−4,

err2 = ‖y2 − x2‖ ≈ 1.0 · 10−3,

respectively. For this data our algorithm computes new approximations

Ynew = [ynew,1, ynew,2]
.
=


0.999999992092387 −0.000000050401176
−0.000000161788990 −0.999999497314401

0.000091632309098 −0.000967246231786
0.000086131966404 −0.000264207603769
−0.000000062534618 0.000000112221290

 ,
to the eigenvectors with errors

errnew,1 = ‖ynew,1 − x1‖ ≈ 1.258 · 10−4,

errnew,2 = ‖ynew,2 − (−x2)‖ ≈ 1.00268 · 10−3.

Note that here ynew,2 is an approximation to −x2, but the (real) normed eigen-
vectors of H are defined only up to a factor ±1 anyway. For the convergence
rates we obtain

errnew,1
err1

≈ 0.203 ≤ λ1
λ3

= 0.5,

errnew,2
err2

≈ 1.00268 ≤ 1

4

(2− λ2/λ3)2√
1− λ2/λ3

≈ 1.00946,

i.e., for the second eigenvector a convergence rate > 1 with a very sharp bound
(14). These convergence rates are plotted in Figure 2.
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4.3 Example 3

We consider a nonlinear eigenvalue problem of the form

H(X)X = XΛm, (16)

where X ∈ Rn×m, XTX = Im, H(X) ∈ Rn×n is a symmetric matrix depend-
ing on X, and Λm ∈ Rm×m is a diagonal matrix containing the m smallest
eigenvalues of H(X). The (discretized) Hartree-Fock and Kohn-Sham equa-
tions in electronic structure calculations are essentially of this type. Following
[28] we consider a simplified version of these equations2. The dependency of
H(X) on X is expressed through the vector

ρ(X) = diag(XXT ) ∈ Rn (17)

containing the diagonal elements of the matrix XXT , which in electronic struc-
ture calculations would correspond to the charge density of electrons. Then
H(X) is defined by

H(X) = L+ α diag(L−1ρ(X)), (18)

where α ∈ R and L ∈ Rn×n denotes a discrete version of the Laplace operator.
For the numerical solution of the nonlinear eigenvalue problem (16)–(18)

we apply a version of the self-consistent field (SCF) iteration, which is given
by the following algorithm:

Input: An initial guess X(0) satisfying (X(0))TX(0) = Im
for the solution X of (16);

Output: Numerical solution X of (16);
for l = 1, 2, . . . until convergence do

Construct H(l) = H(X(l−1)) according to (17), (18);

Solve the linear eigenproblem H(l)X(l) = X(l)Λ
(l)
m such that

(X(l))TX(l) = Im and Λ
(l)
m contains the m smallest eigenvalues of H(l);

end do
Set X = the last computed X(l);

We refer to this procedure as the “SCF iteration with full diagonalization”
to distinguish it from the following variant referred to as “SCF iteration with
approximate diagonalization (3)”, where the respective linear eigenproblems

H(l)X(l) = X(l)Λ(l)
m (19)

are solved only approximately by employing our algorithm described in Sec-
tion 2. Here, the approximation X(l−1) computed in the previous iteration
step is used for the old approximation to the eigenvectors required by this

2 Our method’s performance for realistic applications in electronic structure computations
is thoroughly discussed in [2].
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Fig. 3 Residual versus cumulative computing time for the SCF iteration with full (∗) and
approximate (+) diagonalization; Davidson variant (×).

algorithm. However, in the first iteration step (l = 1) a reasonably good ap-
proximation X(0) is usually not available. Consequently, for l = 1 we compute
the full solution X(1) of (19) and apply the approximate procedure only for
l ≥ 2.

As a third algorithm in this comparison we use the Davidson method [6]
which was originally implemented in the WIEN2k code, see (8).

Figure 3 illustrates a typical progress of the SCF iteration with both full
and approximate diagonalization. Here we choose n = 1000, m = 30, α = 0.1,
and for L the discrete 1D-Laplace operator on [0, 10] with Dirichlet boundary
conditions, i.e.,

L =
1

h2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 ∈ Rn×n, where h =
10

n
.

For the initial guess we choose X(0) = [Im 0]T with the zero matrix 0 ∈
Rm×(n−m). The figure shows the maximum norm (the maximum of absolute

values over all entries) of the residual H(X(l))X(l) − X(l)Λ
(l)
m versus the cu-

mulative computing time for the first 5 (full diagonalization) respectively 39
(approximate diagonalization) SCF iteration steps. Here only the qualitative
picture is of relevance, not the particular timing of our MATLAB implemen-
tation on current standard hardware. We observe that in this example the
improvement per iteration step is significantly better for the SCF iteration
with full diagonalization, but, more importantly, as long as only moderate
precision is required, the total improvement until a certain cumulated com-
puting time is significantly better for the variant with our new approximate
diagonalization, although more iteration steps are possibly necessary. This is
due to the fact that the cost of one SCF iteration step with approximate di-
agonalization is dominated by the Cholesky decomposition of H(l) needed for
(3), which is much cheaper than a full solution of (19), which dominates the
cost of one SCF iteration step with full diagonalization. Moreover, we observe
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that the classical Davidson method does not provide a sufficiently accurate
approximation even in this simple example.

5 Conclusions

In this paper, we have analyzed a subspace method applicable for the approxi-
mate solution of generalized eigenvalue problems in linear algebra as they arise
for instance in large–scale DFT computations of electronic structure, where
the subspace is expanded based on a new preconditioner. We have derived es-
timates of the improvement achieved by our method starting from a suitable
initial approximation. Numerical examples show that the estimates we derived
are sharp and also apply in realistic examples from applications.
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A Proof of Theorem 1

In this Appendix we give the proof of Theorem 1. First, in Subsection A.1 we characterize
Dnew from (13) as the solution of a certain Sylvester equation. Then, in Subsection A.2 we
derive an explicit representation of the solution of this equation. The proof of Theorem 1 is
thus reduced to the derivation of bounds for this solution, which we state as Proposition 3
and prove for the special case m = 1 in Subsection A.3 and for the special case n = 2m+1 in
Subsection A.4. Finally, in Subsection A.5 we show that the general case can be reduced to
the latter special one, which completes the proof of Proposition 3 and thus also of Theorem 1.

A.1 Characterization of Dnew as the Solution of a Sylvester Equation

Proposition 1 Let

D =

[
D1

D2

]
, Λ =

[
Λ1 0
0 Λ2

]
, D̂2 := Λ−1

2 D2Λ1 (20)

with D1 ∈ Rm×m, D2 ∈ R(n−m)×m, Λ1 ∈ Rm×m, Λ2 ∈ R(n−m)×(n−m). Let P denote the
orthogonal projection of Rn−m onto the subspace spanned by the columns of D2 − D̂2, i.e.,

PT = P, P 2 = P, P (D2 − D̂2) = D2 − D̂2.

Then for Dnew given in (13),

Dnew =

[
0
K

]
+O(ε), (21)

holds, where 0 ∈ Rm×m and K ∈ R(n−m)×m is the unique solution of the Sylvester equation

PΛ2K −KΛ1 + (In−m − P )D2Λ1 = 0. (22)
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The proof of the proposition is constituted by the following consecutive substeps.

Step 1 The Ritz values (2) satisfy

ϑj = λj +O(ε2), j = 1, . . . ,m.

Proof

ϑj =
yTj Hyj

yTj Syj
=

(xj +∆yj)
T (λjSxj +H∆yj)

(xj +∆yj)T (Sxj + S∆yj)

=
λjx

T
j Sxj + λj∆y

T
j Sxj + xTj H∆yj +O(ε2)

xTj Sxj +∆yTj Sxj + xTj S∆yj +O(ε2)

=
λj(1 + 2αj) +O(ε2)

1 + 2αj +O(ε2)
= λj +O(ε2).

Here we used αj := xTj S∆yj and xTj H∆yj = λjx
T
j S∆yj , and noted (9). ut

Step 2 The representation of Z from (3) in the basis X satisfies

Z = εX(D − D̂) +O(ε2) with D̂ := Λ−1DΛ1. (23)

Proof

zj = H−1(H − ϑjS)yj

= yj − ϑjH−1Syj

= xj +∆yj − λj(H−1Sxj +H−1S∆yj) +O(ε2)

= xj +∆yj − λj(
1

λj
xj +H−1S∆yj) +O(ε2)

= ∆yj − λjH−1S∆yj +O(ε2)

= ε(Xdj − λjH−1SXdj) +O(ε2)

= ε(Xdj − λjXΛ−1dj) +O(ε2).

Here, dj are the columns of D. ut

Step 3 Let
U := X−1[Y Z].

Then the matrices H̃ and S̃ from (5) and (6) can be written as

H̃ = UTΛU and S̃ = UTU (24)

and it holds

U = [In,m + εD, ε(D − D̂)] +O(ε2), D̂ := Λ−1DΛ1. (25)

Here In,m ∈ Rn×m consists of the first m columns of In.

Proof From XTHX = XTSXΛ = Λ (cf. (1) and (9)) it follows

H̃ = [Y Z]TH[Y Z] = UTXTHXU = UTΛU

and
S̃ = [Y Z]TS[Y Z] = UTXTSXU = UTU.

(25) is a consequence of Y = X(In,m + εD) and (23). ut
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Next, we solve the reduced eigenproblem (4) by transforming it to an eigenproblem in
standard form. We achieve this by a suitable factorization of the matrix U in (24). Note
that U = X−1[Y Z] has full rank 2m by assumption (cf. the end of Section 2).

Step 4 Let the columns of Q ∈ Rn×2m form an orthonormal basis of the subspace spanned
by the columns of U , i.e.,

QTQ = I2m and U = QΦ (26)

for an invertible coordinate transformation matrix Φ ∈ R2m×2m. Further let Ω1:m ∈
R2m×m consist of orthonormal eigenvectors corresponding to the m lowest eigenvalues
γ1 ≤ · · · ≤ γm of the symmetric eigenproblem (in standard form)

QTΛQΩ = ΩΓ. (27)

Then there is a solution V1:m of (4) such that Ynew defined by (7) satisfies

Ynew = XQΩ1:m. (28)

Proof Let
V1:m := Φ−1Ω1:m.

Then the columns of V1:m are orthonormal with respect to S̃,

V T1:mS̃V1:m = ΩT1:mΦ
−T S̃Φ−1Ω1:m

= ΩT1:mΦ
−TUTUΦ−1Ω1:m

= ΩT1:mQ
TQΩ1:m = ΩT1:mΩ1:m = Im,

and it holds

H̃V1:m = UTΛUΦ−1Ω1:m = ΦTQTΛQΩ1:m = ΦTΩ1:mΓ

= ΦTΦV1:mΓ = ΦTQTQΦV1:mΓ = UTUV1:mΓ

= S̃V1:mΓ.

So V1:m is a solution of (4) and it holds

Ynew = [Y Z]V1:m = XUΦ−1W1:m = XQW1:m.

ut

Let us stress that in (26) U = QΦ holds exactly (and not just up to terms of order
O(ε2)). In the previous proof all calculations are exact and thus (28) holds exactly, too.
Note that the fact that the entries of the matrix Φ−1 are possibly unbounded for ε → 0
does not affect the arguments.

An orthonormal basis Q of U can be obtained by computing a QR-decomposition of
U . However, to obtain an orthonormal basis with more favorable properties for the further
analysis, we first perform some elementary column transformations on U , then compute the
QR-decomposition UJ = QR of the transformed matrix UJ , and finally set Φ := RJ−1 in
(26).

Step 5 There exists J ∈ R2m×2m with J = O(1) and J−1 = O(1) such that

UJ =

[
Im 0

εD2 ε(D2 − D̂2)

]
+O(ε2). (29)

Here D2 and D̂2 = Λ−1
2 D2Λ1 are defined as in (20).
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Proof Using (25) it is easily verified that (29) holds for

J :=

[
Im − εD1 −ε(D1 − D̂1)

0 Im

]
and, consequently,

J−1 =

[
Im + εD1 ε(D1 − D̂1)

0 Im

]
+O(ε2),

where D̂1 = Λ−1
1 D1Λ1. ut

Step 6 For UJ a QR-decomposition

UJ = QR (30)

(where Q ∈ Rn×2m satisfies QTQ = I2m and R ∈ R2m×2m is an upper triangular matrix)
can be chosen such that Q is of the form

Q =

[
Im +O(ε2) εQ12 +O(ε2)
εQ21 +O(ε2) Q22 +O(ε)

]
. (31)

Here Q12 ∈ Rm×m, Q21 ∈ R(n−m)×m, and Q22 ∈ R(n−m)×m are of order O(1) and satisfy

Q21 = D2, (32)

Q12 = −QT21Q22, (33)

QT22Q22 = Im, (34)

Q22Q
T
22 = P, (35)

where P is the orthogonal projection onto D2 − D̂2.

Proof Q is of the form

Q =

[
Q0

11 + εQ1
11 +O(ε2) Q0

12 + εQ12 +O(ε2)
Q0

21 + εQ21 +O(ε2) Q22 +O(ε)

]
.

We want to show that Q0
12 = 0, Q0

21 = 0, Q1
11 = 0, and Q0

11 = Im. Let

R =

[
R11 R12

0 R22

]
.

By comparing the lower left blocks in

QR = UJ =

[
Im 0
0 0

]
+O(ε)

(cf. (29)) up to terms of order O(1), we obtain Q0
21R11 = 0, so Q0

21 = 0, because R11 is
non-singular. Then the upper left blocks in QTQ = I2m and QR = UJ give respectively

Q0
11
T
Q0

11 = Im (36)

and Im = (Q0
11 + εQ1

11)R11 +O(ε2), thus Q1
11 = 0 and

Q0
11R11 = Im.

R11 is an upper triangular matrix, so Q0
11 = R−1

11 is also upper triangular. On the other
hand, (Q0

11)T = (Q0
11)−1 = R11, so Q0

11 is both upper and lower triangular, i.e., Q0
11 is

a diagonal matrix with ±1 elements as follows from (36). So for some choice of the QR
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decomposition (30) it holds Q0
11 = Im. Finally, Q0

12 = 0 now follows from comparing the
right upper blocks in QTQ = I2m.

The identities (33) and (34) follow from (31) by evaluating QTQ = I2m up to terms of
order O(ε).

Now, by comparing the upper left blocks in QR = UJ up to terms of order O(1)
we obtain (Im + O(ε2))R11 = I + O(ε) and thus R11 = I + O(ε). Substituting this into
εQ21R11 = εD2 + O(ε2) (the lower left block of QR = UJ up to terms of order O(ε)) we
obtain (32).

Similarly, comparing the upper right blocks in QR = UJ up to terms of order O(1)
yields (Im +O(ε2))R12 = O(ε) and thus R12 = O(ε). Substituting this and Q21 = D2 into

εQ21R12 +Q22R22 = ε(D2 − D̂2) +O(ε2) (the lower right block of QR = UJ) we see from

(34) that Q22R22 can be chosen as a QR-decomposition of ε(D2− D̂2). From this it follows

that P := Q22QT22 is the orthogonal projection onto D2 − D̂2. ut

Step 7 The eigenvector matrix Ω ∈ R2m×2m in (27) with Q defined in (30) can be chosen
in the form

Ω =

[
Im +O(ε2) εΩ12 +O(ε2)
εΩ21 +O(ε2) Ω22 +O(ε)

]
, (37)

where Ω12 ∈ Rm×m, Ω21 ∈ Rm×m, and Ω22 ∈ Rm×m are of order O(1) and satisfy

Ω12 = −ΩT21Ω22, (38)

Ω21 = −Ω22Ω
T
12, (39)

ΩT22Ω22 = Ω22Ω
T
22 = Im. (40)

Proof From (31) it follows

QTΛQ =

[
Λ1 +O(ε) O(ε)
O(ε) QT22Λ2Q22 +O(ε)

]
.

Since the eigenvectors of

[
Λ1 0
0 QT22Λ2Q22

]
have the form

[
Im 0
0 Ω22

]
, it follows from the

well-conditioning of the symmetric eigenproblem under the assumption (11) that the matrix

Ω consisting of the eigenvectors of QTΛQ is of the form

[
Im +O(ε) O(ε)
O(ε) Ω22 +O(ε)

]
, i.e.,

Ω =

[
Im + εG+O(ε2) εΩ12 +O(ε2)
εΩ21 +O(ε2) Ω22 +O(ε)

]
.

Here G is antisymmetric, GT = −G, and equations (38), (39), and (40) hold, which follows
from the evaluation of ΩTΩ = I2m and ΩΩT = I2m up to terms of order O(ε). We now
show that actually G = 0. With

QΩ =

[
Im + εG+O(ε2) εΩ12 + εQ12Ω22 +O(ε2)

εQ21 + εQ22Ω21 +O(ε2) Q22Ω22 +O(ε)

]
(41)

the upper left block in ΩTQTΛQΩ = Γ evaluated up to terms of order O(ε) gives

Λ1 + εGTΛ1 + εGΛ1 +O(ε2) = Γ1,

and the antisymmetry of G shows that G and Λ1 commute,

GΛ1 = Λ1G.

From this G = 0 follows by an application of the following Lemma 1. ut
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Lemma 1 Let A ∈ Rn×n be antisymmetric,

AT = −A,

and let Λ = diag(λ1, . . . , λn) with distinct λj . If A and Λ commute,

AΛ = ΛA, (42)

then
A = 0. (43)

The lemma is proven by induction on n. ut
Finally, we can give the proof of Proposition 1.

Step 8 (Proof of Proposition 1). Let

K := Q21 +Q22W21 = D2 +Q22W21.

Then

Dnew =

[
0
K

]
+O(ε)

follows from (12), (13), (28), and (41). We have to show that K solves the Sylvester equation

PΛ2K −KΛ1 + (In−m − P )D2Λ1 = 0.

Comparison of the upper right blocks in WTQTΛQW = Γ up to terms of order O(ε) yields

(WT
12 +WT

22Q
T
12)Λ1 +WT

22Q
T
22Λ2K = 0.

With WT
12 = −WT

22W21 and QT12 = −QT22Q21 (cf. Steps 6 and 7) it follows

(−WT
22W21 −WT

22Q
T
22Q21)Λ1 +WT

22Q
T
22Λ2K = 0.

Multiplication with Q22W22 from the left using W22WT
22 = Im, Q22QT22 = P , and Q21 = D2

gives
(−Q22W21 − PD2)Λ1 + PΛ2K = 0

or
(−Q22W21 −D2)︸ ︷︷ ︸

=−K

Λ1 + PΛ2K = (PD2 −D2)Λ1.

It remains to prove uniqueness of the solution K. Generally, a Sylvester equation

AX +XB + C = 0

has a unique solution, if and only if

α+ β 6= 0

for all eigenvalues α of A and all eigenvalues β of B. Now observe that the eigenvalues of
−Λ1 are −λ1, . . . ,−λm and all non-zero eigenvalues of PΛ2 are ≥ λm+1, see Lemma 2
below. Thus the uniqueness of K follows from the assumption that the λj are non-zero and
distinct. ut

Lemma 2 Let P ∈ Rn×n be an orthogonal projection, i.e.,

PT = P, P 2 = P,

and Λ = diag(λ1, . . . , λn) with λj ∈ R and λj > 0 for all j = 1, . . . , n. Then all non-zero
eigenvalues of PΛ are real and lie in the interval [minj λj ,maxj λj ].
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Proof If P = In or P = 0 then the statement of the lemma clearly holds. So let P 6= In and
P 6= 0. Let γ be a non-zero eigenvalue of PΛ with corresponding eigenvector x. Then

PΛx = γPx and Px =
1

γ
PΛx = x,

and thus
PTΛPx = PΛPx = γx,

i.e., γ is an eigenvalue of the symmetric matrix PTΛP and it follows γ ∈ R. Moreover γ > 0
since PTΛP is positive semidefinite and γ was assumed to be non-zero. It remains to prove
that all non-zero eigenvalues of PTΛP are in the interval [minj λj ,maxj λj ].

Since P 6= 0, In, P is a projection onto a proper subspace of Rn and thus P and PTΛP
are singular. It follows that 0 is the smallest eigenvalue of PTΛP . Let N be the null-space
of P , i.e, the eigenspace corresponding to the smallest eigenvalue 0. Let γ2 be the smallest
non-zero eigenvalue of PTΛP . Then

γ2 = max
y∈N

min
x 6=0, yT x=0

xTPTΛPx

xT x

by the min-max principle for eigenvalues of symmetric matrices. Since N⊥P (Rn), it holds
yTPx = 0 for all x and all y ∈ N , and thus

γ2 ≥ min
x6=0, x=Px

xTPTΛPx

xT x
= min
x 6=0, x=Px

xTΛx

xT x
≥ min
x 6=0

xTΛx

xT x
= min
j=1,...,n

λj .

Finally, for the largest eigenvalue γmax of PTΛP we obtain

γmax = max
x 6=0, x=Px

xTΛx

xT x
≤ max

x6=0

xTΛx

xT x
= max
j=1,...,n

λj .

ut

Remark. From (13) and (21) we obtain

∆Ynew = εXm+1:nK +O(ε2). (44)

Here it is quite remarkable that up to terms of order O(ε2) the new error ∆Ynew has no
components in the subspace spanned by the first m eigenvectors X1:m. It is another notable
fact, that up to terms of order O(ε2) the new error does not depend on components of the old
error in the X1:m-subspace, since (22) depends only on D2 and not on D1. Consequently, it
is to be expected that in the first step the error will be reduced significantly if the algorithm
is applied in an iterative way, since the components in the space X1:m are annihilated by
the projection. Subsequent iteration steps will essentially operate in the Xm+1:n-subspace
only, and the evolution of the error is described by the nonlinear operator D2 7→ K given in
Proposition 1.

A.2 Explicit Representation of Dnew

Next, we give an explicit representation of the solution K of the Sylvester equation (22)
which by (21) constitutes an explicit representation of Dnew up to terms of order O(ε). Let
dj and kj (j = 1, . . . ,m) denote the j-th columns of D2 and K, respectively. Similarly, let

d̂j = λjΛ
−1
2 dj denote the j-th column of D̂2.

Proposition 2 Let W ∈ R(n−m)×m consist of orthonormal eigenvectors corresponding to
the non-zero eigenvalues γm+1 ≤ · · · ≤ γ2m of the symmetric matrix PΛ2P ,

PΛ2PW = WΓ2, Γ2 = diag(γm+1, . . . , γ2m), (45)

where P denotes the projection onto D2 − D̂2 as in Proposition 1. Then

kj = d̂j − λjW (Γ2 − λjIm)−1WT (dj − d̂j), j = 1, . . . ,m. (46)
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Proof We have to verify that

PΛ2kj − λjkj + λj(In−m − P )dj = 0, j = 1, . . . ,m,

cf. (22). This is done by a straightforward calculation using d̂j = λjΛ
−1
2 dj , P = WWT ,

WTΛ2W = Γ2, and P (dj − d̂j) = dj − d̂j :

PΛ2kj − λjkj = (PΛ2 − λjIn−m)
(
d̂j − λjW (Γ2 − λjIm)−1WT (dj − d̂j)

)
= λjPdj − λj d̂j − λjWWTΛ2W (Γ2 − λjIm)−1WT (dj − d̂j)

+λ2jW (Γ2 − λjIm)−1WT (dj − d̂j)

= λjPdj − λj d̂j − λjW (Γ2 − λjIm)(Γ2 − λjIm)−1WT (dj − d̂j)

= λjPdj − λj d̂j − λjP (dj − d̂j)

= λjPdj − λj d̂j − λj(dj − d̂j)
= λj(P − In−m)dj .

ut

Note that up to terms of order O(ε) the j-th column of Dnew has the form
[

0
kj

]
and depends

only on dj , i.e., the first m entries of the j-th column
[
∗
dj

]
of D are irrelevant. It follows

that the bounds of Theorem 1 are equivalent to corresponding bounds of ‖kj‖ in terms of
‖dj‖. Thus the proof of Theorem 1 is reduced to establishing the following Proposition 3.

Proposition 3 For kj from (46), the following estimates hold:

‖kj‖ ≤


|λj |
λm+1

‖dj‖ for λj/λm+1 ≤ 2
√

2− 2,

1

4

(2− λj/λm+1)2√
1− λj/λm+1

‖dj‖ for λj/λm+1 ≥ 2
√

2− 2,

j = 1, . . . ,m. (47)

In the special case m = 1 it holds

‖k1‖ ≤
|λ1|
λ2
‖d1‖ (48)

even for λ1/λ2 ≥ 2
√

2− 2.

In the following Subsection A.3 we give the proof of (48) for the special case m = 1.
Then, in Subsection A.4 we prove (47) in the special case n = 2m + 1, and finally, in
Subsection A.5 we show how the general case can be reduced to this special one, and thus
that (47) holds in general.

A.3 The Special Case m = 1

For m = 1, D2 and D̂2 defined in Proposition 1 both consist of one column only which
we denote by d and d̂, respectively. Then also W defined in Proposition 2 consists of one
column w only, which is a unit vector in the one-dimensional subspace spanned by d − d̂,
such that (up to sign) it must hold

w =
d− d̂
‖d− d̂‖
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and

Γ2 = γ2 = wTΛ2w =
〈d− d̂, Λ2(d− d̂)〉
‖d− d̂‖2

. (49)

Now (46) of Proposition 2 reduces to

k = k1 = d̂−
λ1

γ2 − λ1
(d− d̂) =

−λ1
γ2 − λ1

d+
γ2

γ2 − λ1
d̂. (50)

We will show that ‖k‖ ≤ ‖d̂‖ by applying the following simple lemma.

Lemma 3 If y ∈ Rn lies on the line through two points p1 and p2 with ‖p2‖ < ‖p1‖,

y = (1− t)p1 + tp2 for some t ∈ R,

then

‖y‖ ≤ ‖p1‖ if and only if 0 ≤ t ≤ 2tmin,

‖y‖ ≤ ‖p2‖ if and only if 1 ≤ t ≤ 2tmin − 1.

Here

tmin =
〈p1, p1 − p2〉
‖p1 − p2‖2

is such that
ymin = (1− tmin)p1 + tminp2

is the point on the line through p1 and p2 with minimal norm.

Proof Elementary analytical geometry. ut

Proposition 3 (for the special case m = 1) In the case m = 1 it holds

‖k‖ ≤ ‖d̂‖ ≤
|λ1|
λ2
‖d‖. (51)

Proof We apply Lemma 3 with p1 = d, p2 = d̂, and y = k as given by (50). For d 6= 0 it

clearly holds ‖d̂‖ ≤ |λ1|
λ2
‖d‖ < ‖d‖ as required. We have to verify

1 ≤ t =
γ2

γ2 − λ1
≤ 2tmin − 1. (52)

Because γ2 ≥ λ2 ≥ λ1, the first inequality is clear. For the second we will show that even

t =
γ2

γ2 − λ1
≤ tmin =

〈d, d− d̂〉
‖d− d̂‖2

(
≤ 2tmin − 1

)
(53)

holds, which by elementary manipulations is equivalent to

γ2 ≥ λ1
〈d, d− d̂〉
〈d̂, d− d̂〉

,

where we use 〈d, d− d̂〉 =
∑n
i=2(1− λ1

λi
)d2i > 0 and 1

λ1
〈d̂, d− d̂〉 =

∑n
i=2

1
λi

(1− 1
λi

)d2i > 0,

where the di are the components of d = (d2, . . . , dn)T . With γ2 given by (49) we obtain the
following sequence of inequalities, all equivalent to (53):

〈d, d− d̂〉‖d− d̂‖2 ≤
1

λ1
〈d− d̂, Λ2(d− d̂)〉〈d̂, d− d̂〉,

〈d, d− d̂〉2 − 〈d, d− d̂〉〈d̂, d− d̂〉 ≤
1

λ1
〈Λ2d, d− d̂〉〈d̂, d− d̂〉 − 〈d, d− d̂〉〈d̂, d− d̂〉,

〈d, d− d̂〉2 ≤
〈

1

λ1
Λ2d, d− d̂

〉
〈d̂, d− d̂〉.
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Here the last inequality can be written as(
n∑
i=2

(
1−

λ1

λi

)
d2i

)2

≤
(

n∑
i=2

λi

(
1−

λ1

λi

)
d2i

)(
n∑
i=2

1

λi

(
1−

λ1

λi

)
d2i

)

which holds by the Cauchy–Schwarz inequality. This proves (53) and establishes Proposi-
tion 3 for m = 1. ut

A.4 The Special Case n = 2m+ 1

For n = 2m + 1 there exists a vector w0 ∈ Rm satisfying ‖w0‖ = 1 and WTw0 = 0, where
W ∈ R(m+1)×m is given in Proposition 2. These conditions determine w0 uniquely up to
sign. Augmenting matrix W by the column vector w0 yields an orthogonal matrix, which
(for convenience) we denote by V T ,

V T := [Ww0], V TV = V V T = Im+1.

From WTΛ2W = Γ2 it follows

V Λ2V
T =

[
Γ2 y

yT σ

]
(54)

with
y = WTΛ2w0 and σ = wT0 Λ2w0.

γj satisfy
λm+1 ≤ γm+1 ≤ λm+2 ≤ γm+2 ≤ · · · ≤ λ2m ≤ γ2m ≤ λ2m+1, (55)

cf. [9, Theorem 4.3.8].
[9, Theorem 4.3.10] gives the converse of the statement (55): For a given sequence

γm+1, . . . , γ2m of real numbers which satisfy (55) there exist essentially unique σ ∈ R and
y ∈ Rm (σ is unique while the components of y are unique up to sign) such that the
symmetric matrix on the right of (54) has eigenvalues λm+1, . . . , λ2m+1, i.e., such that (54)
holds after a diagonalization of the matrix. σ and y = (ym+1, . . . , y2m)T are explicitly given
by

σ = trace V Λ2V
T − trace Γ2 =

2m+1∑
i=m+1

λi −
2m∑

j=m+1

γj ,

y2j = −
∏2m+1
i=m+1(γj − λi)∏2m
i=m+1
i6=j

(γj − γi)
, j = m+ 1, . . . , 2m. (56)

Let vi =

[
zi
w0i

]
with zi ∈ Rm, i = m+ 1, . . . , 2m+ 1 be the columns of the matrix V . vi is

an eigenvector of norm 1 of the matrix (54) corresponding to the eigenvalue λi, thus([
Γ2 y

yT σ

]
− λiIm+1

)
v =

[
Γ2 − λiIm y

yT σ − λi

] [
zi
w0i

]
= 0,

whence
zi = −w0i(Γ2 − λiIm)−1y.

The requirement ‖vi‖2 = w2
0i + ‖zi‖2 = 1 gives1 +

2m∑
j=m+1

y2j

(γj − λi)2

w2
0i = 1,
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which after inserting (56) leads to

w2
0i =

∏2m
j=m+1(γj − λi)∏2m+1
j=m+1
j 6=i

(λi − λj)
, i = m+ 1, . . . , 2m+ 1. (57)

Let dj , j = 1, . . . ,m denote the columns of D2, and let d̂j = λjΛ
−1
2 dj , j = 1, . . . ,m

denote the columns of D̂2, cf. Proposition 1. By definition of W , dj − d̂j lies in the span of

W , so there exists an xj ∈ Rm with (Im+1 − λjΛ−1
2 )dj = dj − d̂j = Wxj , or

dj = Λ2(Λ2 − λjIm+1)−1Wxj , j = 1, . . . ,m.

Similarly,

kj = d̂j − λjW (Γ2 − λjIm)−1WT (dj − d̂j)

= λjΛ
−1
2 Λ2(Λ2 − λjIm+1)−1Wxj − λjW (Γ2 − λjIm)−1WTWxj

= λj
(
(Λ2 − λjIm+1)−1 −W (Γ2 − λjIm)−1WT

)
Wxj , j = 1, . . . ,m.

With

Aj = (Λ2 − λjIm+1)−1 −W (Γ2 − λjIm)−1WT , (58)

Bj = Λ2(Λ2 − λjIm+1)−1, j = 1, . . . ,m (59)

we have dj = BjWxj and kj = λjAjWxj , therefore

‖kj‖ ≤ |λj |max
x6=0

‖AjWx‖
‖BjWx‖

‖dj‖ (60)

= |λj | max
y∈{Wx:x∈Rm}r{0}

‖Ajy‖
‖Bjy‖

‖dj‖ (61)

≤ |λj |max
y 6=0

‖Ajy‖
‖Bjy‖

‖dj‖, j = 1, . . . ,m. (62)

We rely for our further analysis on the latter estimate (62) which is based on the matrices
Aj and Bj , since these are easier to handle than the matrices AjW and BjW on which the
sharper estimate (60) is based. It turns out that Aj has a very simple structure: As

WT (Λ2 − λjIm+1)Aj = WT −WT (Λ2 − λjIm+1)W (Γ2 − λjIm)−1WT

= WT − (Γ2 − λjIm)(Γ2 − λjIm)−1WT

= 0,

the range of (Λ2 − λjIm+1)Aj(Λ2 − λjIm+1) is orthogonal to W and thus must be equal
to the span of w0. It follows that (Λ2 − λjIm+1)Aj(Λ2 − λjIm+1) is a symmetric rank-one
matrix of the form αjw0wT0 , and thus Aj itself is a symmetric rank-one matrix of the form

Aj = αjaja
T
j with aj = (Λ2 − λjIm+1)−1w0.

Using WTw0 = 0 we obtain from (58)

wT0 Ajw0 = wT0 (Λ2 − λjIm+1)−1w0.

On the other hand,

wT0 Ajw0 = αjw
T
0 aja

T
j w0 = αjw

T
0 (Λ2 − λjIm+1)−1w0w

T
0 (Λ2 − λjIm+1)−1w0

whence

αj =
1

wT0 (Λ2 − λjIm+1)−1w0
= 1

/
2m+1∑
i=m+1

w2
0i

λi − λj
.
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Inserting (57) this yields

αj =

∏2m+1
i=m+1(λi − λj)∏2m
i=m+1(γi − λj)

, j = 1, . . . ,m.

The maximum value of the bound (62) is equal to the square root of the largest eigenvalue
λ of the generalized eigenvalue problem

A2
jx = λB2

j x,

or, equivalently, of the standard eigenvalue problem

B−1
j A2

jB
−1
j x = λx, (63)

whose matrix is again a symmetric rank-one matrix

B−1
j A2

jB
−1
j = α2

j‖aj‖2bjbTj with bj = B−1
j aj = Λ−1

2 w0.

Now it is easily seen that bj is an eigenvector of (63) corresponding to the eigenvalue
α2
j‖aj‖2‖bj‖2, which finally implies

‖kj‖ ≤ |λj |max
y 6=0

‖Ajy‖
‖Bjy‖

‖dj‖

= |λj |αj‖aj‖‖bj‖‖dj‖

= |λj |αj‖(Λ2 − λjIm+1)−1w0‖‖Λ−1
2 w0‖‖dj‖

≤ |λj |
√

max
(γm+1,...,γ2m)∈K

f(γm+1, . . . , γ2m;λj ;λm+1, . . . , λ2m+1)‖dj‖. (64)

Here K = K(λm+1, . . . , λ2m+1) denotes the rectangle

K = {(γm+1, . . . , γ2m) ∈ Rm :

λm+1 ≤ γm+1 ≤ λm+2 ≤ γm+2 ≤ · · · ≤ λ2m ≤ γ2m ≤ λ2m+1}

and the function f(γm+1, . . . , γ2m) = f(γm+1, . . . , γ2m;λj ;λm+1, . . . , λ2m+1) is defined as

f(γm+1, . . . , γ2m) = f(γm+1, . . . , γ2m;λj ;λm+1, . . . , λ2m+1)

= α2
j‖(Λ2 − λjIm+1)−1w0‖2‖Λ−1

2 w0‖2

=

∏2m+1
l=m+1(λl − λj)2∏2m
l=m+1(γl − λj)2

 2m+1∑
i=m+1

1

(λi − λj)2

∏2m
l=m+1(γl − λi)∏2m+1
l=m+1
l6=i

(λl − λi)



×

 2m+1∑
i=m+1

1

λ2i

∏2m
l=m+1(γl − λi)∏2m+1
l=m+1
l6=i

(λl − λi)

 . (65)

Finally, by applying Lemma 4 below, Proposition 3 for the special case n = 2m+ 1 follows
from (64).

Lemma 4 Let 0 < λ1 < · · · < λm+1 and ω < λ1 be given. Let K = K(λ1, . . . , λm+1) ⊆
Rm denote the rectangle

K = {(γ1, . . . , γm) ∈ Rm : λ1 ≤ γ1 ≤ λ2 ≤ γ2 ≤ · · · ≤ λm ≤ γm ≤ λm+1} , (66)

and let f : K → R be the function given by

f(γ1, . . . , γm) =
fA(γ1, . . . , γm)fB(γ1, . . . , γm)

fC(γ1, . . . , γm)2
, (67)
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where

fA(γ1, . . . , γm) =

m+1∑
i=1

1

(λi − ω)2

∏m
j=1(γj − λi)∏m+1
j=1
j 6=i

(λj − λi)
, (68)

fB(γ1, . . . , γm) =

m+1∑
i=1

1

λ2i

∏m
j=1(γj − λi)∏m+1
j=1
j 6=i

(λj − λi)
, (69)

fC(γ1, . . . , γm) =

∏m
i=1(γi − ω)∏m+1
i=1 (λi − ω)

. (70)

Then it holds

max
(γ1,...,γm)∈K

f(γ1, . . . , γm) ≤


1

λ21
for ω/λ1 ≤ 2

√
2− 2,

1

16ω2

(2− ω/λ1)4

1− ω/λ1
for ω/λ1 ≥ 2

√
2− 2.

(71)

Proof First, note that from ω < λ1 ≤ γ1 ≤ λ2 ≤ γ2 ≤ · · · ≤ λm ≤ γm ≤ λm+1 it follows
easily

f(γ1, . . . , γm) ≥ 0 for (γ1, . . . , γm) ∈ K. (72)

Next, we show that if m ≥ 2, then f has no local maximum in the interior of K. The
factor

∏m
j=1(ω − γj) = (−1)m

∏m
j=1(γj − ω) occurring in fC can be written as

m∏
j=1

(ω − γj) = ωm − s1ωm−1 + s2ω
m−2 − · · ·+ (−1)msm,

where sj are the elementary symmetric polynomials in the variables γ1, . . . , γm,

s1 = γ1 + · · · γm,

s2 = γ1γ2 + γ1γ3 + · · ·+ γm−1γm =
∑

1≤i<j≤m
γiγj ,

s3 =
∑

1≤i<j<k≤m
γiγjγk,

...

sm = γ1γ2 · · · γm.

It follows that fC is a linear function of s1, . . . , sm,

fC(γ1, . . . , γm) = f̃C(s1, . . . , sm) = c0 +

m∑
j=1

cjsj (73)

with coefficients cj depending on ω and λ1, . . . , λm+1. Similarly by expanding

m∏
j=1

(λi − γj) = λmi − s1λ
m−1
i + s2λ

m−1
i − · · ·+ (−1)msm, i = 1, . . . ,m+ 1

it follows that also fA and fB are linear functions of s1, . . . , sm,

f̃A(s1, . . . , sm) = a0 +

m∑
j=1

ajsj , f̃B(s1, . . . , sm) = b0 +

m∑
j=1

bjsj , (74)
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where the coefficients aj , bj again depend on ω and λ1, . . . , λm+1. In summary, the variable
transformation

F : (γ1, . . . , γm) 7→ (s1, . . . , sm)

gives f(γ1, . . . , γm) in the form

f(γ1, . . . , γm) = f̃(s1, . . . , sm) =
f̃A(s1, . . . , sm)f̃B(s1, . . . , sm)

f̃C(s1, . . . , sm)2
,

where each of f̃A, f̃B , f̃C is a linear function of s1, . . . , sm, cf. (74), (73). The Jacobian
determinant of F is given by

detDF (γ1, . . . , γm) =
∏

1≤i<j≤m
(γi − γj)

(cf. [14]), which vanishes if and only if γj = γj+1 = λj+1 for some 1 ≤ j ≤ m − 1,
i.e., on the boundary of K. It follows that detDF (γ1, . . . , γm) 6= 0 for (γ1, . . . , γm) in the
interior of K. Thus a local maximum (γ∗1, . . . , γ∗m) of f in the interior of K would be
a critical point (s∗1, . . . , s∗m) = F (γ∗1, . . . , γ∗m) of f̃ . Lemma 5 below would thus imply
f(γ∗1, . . . , γ∗m) = f̃(s∗1, . . . , s∗m) = 0, which cannot hold for a local maximum of f in the
interior of K, since f is nonnegative there, cf. (72). This shows that f has no local maximum
in the interior of K and thus the maximum of f is attained at the boundary of K.

To find the maximum of f on K, we have to examine f on the boundary of K, so let
us assume that γk = λk∗ holds for some 1 ≤ k ≤ m and k∗ = k or k∗ = k + 1. Then, due
to
∏m
j=1(γj − λk∗ ) = 0, it follows from (68)–(70)

fA(γ1, . . . , γm) =

m+1∑
i=1
i6=λk∗

1

(λi − ω)2
γk − λi
λk∗ − λi︸ ︷︷ ︸

=1

∏m
j=1
j 6=k

(γj − λi)∏m+1
j=1

j 6=i,j 6=k∗
(λj − λi)

, (75)

fB(γ1, . . . , γm) =

m+1∑
i=1
i6=λk∗

1

λ2i

γk − λi
λk∗ − λi︸ ︷︷ ︸

=1

∏m
j=1
j 6=k

(γj − λi)∏m+1
j=1

j 6=i,j 6=k∗
(λj − λi)

, (76)

fC(γ1, . . . , γm) =
γk − ω
λk∗ − ω︸ ︷︷ ︸

=1

∏m
i=1
i6=k∗

(γi − ω)∏m+1
i=1 (λi − ω)

. (77)

Thus, if the value γk = λk∗ is fixed, then γk and λk∗ no longer appear in (75)–(77), and
after renumbering γj+1 → γj , j = k, . . . ,m− 1 and similarly λj+1 → λj , j = k∗, . . . ,m we
obtain the formulae corresponding to (67)–(70) for the m−1 variables γ1, . . . , γm−1 instead
of m. Note that after removing γk, λk∗ and renumbering the remaining variables as stated,
the constraints

ω < λ1 ≤ γ1 ≤ λ2 ≤ · · · ≤ λm−1 ≤ γm−1 ≤ λm
remain valid. Furthermore, the bound (71) is monotonically decreasing with respect to λ1.
Therefore a bound of the form (71) with the original (instead of the possibly renumbered)
λ1 for f(γ1, . . . , γm−1) is also a bound for f(γ1, . . . , γm). This reduction m→ m− 1 of the
problem by the above argument can be repeated as long as m ≥ 2, and it follows that if
(71) holds in the special case m = 1, then it holds for all m ≥ 1.

It remains to prove (71) in the special case m = 1. Thus,

f(γ1) =
(λ1λ2 − (λ1 + λ2)γ1)(λ1λ2 − ω2 + (2ω − λ1 − λ2)γ1)

λ21λ
2
2(−ω + γ1)2

.

The maximum of f(γ1) for γ1 ∈ [λ1, λ2] is either attained at the boundary where it holds

f(λ1) =
1

λ22
≤

1

λ21
, f(λ2) =

1

λ21
, (78)
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or the maximum is attained at a critical point γ∗1 ∈ (λ1, λ2). Solving d
dγ1

f(γ1) = 0 yields

a unique critical point

γ∗1 =
2(λ1 + λ2)2 + ω3(λ1 + λ2)− 2ωλ1λ2(λ1 + λ2)

2λ1λ2(λ1 + λ2) + 3ω2(λ1 + λ2)− 2ω(λ1 + λ2)2 − 2ωλ1λ2
,

where f has the value

f(γ∗1) =
ω2(2λ1λ2 − ω(λ1 + λ2))2

4λ21λ
2
2(λ1 − ω)(λ2 − ω)(ω(λ1 + λ2)− λ1λ2)

.

Let us consider the case that γ∗1 ∈ (λ1, λ2) and that the maximal value of f(γ1) for
γ1 ∈ [λ1, λ2] is given by f(γ∗1). (Otherwise the maximum would be attained at γ1 = λ1 or
γ1 = λ2 and (78) would apply.) We regard the expression for f(γ∗1) as a (rational) function
of λ2,

g(λ2) =
ω2(2λ1λ2 − ω(λ1 + λ2))2

4λ21λ
2
2(λ1 − ω)(λ2 − ω)(ω(λ1 + λ2)− λ1λ2)

,

and want to find the maximum of g(λ2) for λ2 ∈ [γ∗1,∞). The existence of this maximum
follows from limλ2→∞ g(λ2) = 0 and the fact that g has no poles in [γ∗1,∞). Note that
ω(λ1 + λ2) 6= λ1λ2 because otherwise γ∗1 = ω contradicting our assumption ω < λ1 < γ∗1.
The maximum has to be attained either at the boundary λ2 = γ∗1, where it holds g(γ∗1) =
f(λ2) = 1/λ21, or at one of the critical points of g, i.e., at one of the zeros of

d

dλ2
g(λ2) =

ω2(2λ1λ2 − ω(λ1 + λ2))(2λ1λ2 − ω(2λ1 + λ2))(2λ1λ22 + ω2(λ1 + λ2)− 2ωλ2(λ1 + λ2))

4λ21λ
3
2(λ1 − ω)(λ2 − ω)2(λ1λ2 − ω(λ1 + λ2))2

.

If the critical point λ2 is a zero of the factor (2λ1λ22 + ω2(λ1 + λ2)− 2ωλ2(λ1 + λ2)) of the

numerator of d
dλ2

g(λ2), then it is also a zero of

γ∗1 − λ2 =
(λ2 − ω)(2λ1λ22 + ω2(λ1 + λ2)− 2ωλ2(λ1 + λ2))

2λ1λ2(λ1 + λ2) + 3ω2(λ1 + λ)− 2ω(λ1 + λ2)2 − 2ωλ1λ2
,

so that λ2 = γ∗1 and thus g(λ2) = g(γ∗1) = f(λ2) = 1/λ21. If on the other hand λ2 is a
zero of the factor (2λ1λ2 − ω(λ1 + λ2)), then g(λ2) = 0 which is not the maximum of g
on [γ∗1,∞). It remains to discuss the case that the critical point λ2 is a zero of the factor
(2λ1λ2 − ω(2λ1 + λ2)). In this case it follows

λ2 =
2ωλ1

2λ1 − ω
with g(λ2) =

1

16

(2λ1 − ω)4

ω2λ31(λ1 − ω)
=

1

16ω2

(2− ω/λ1)4

1− ω/λ1
,

which is a possible candidate for the maximum of g on [γ∗1,∞). Summarizing, we have thus
proven

max
γ∈[λ1,λ2]

f(γ) ≤ max
{ 1

λ1
, f(γ∗1)

}
≤ max

{ 1

λ1
, max
λ2∈[γ∗1,∞)

g(λ2)
}

= max
{ 1

λ1
,

1

16ω2

(2− ω/λ1)4

1− ω/λ1

}

=


1

λ21
for ω/λ1 ≤ 2

√
2− 2,

1

16ω2

(2− ω/λ1)4

1− ω/λ1
for ω/λ1 ≥ 2

√
2− 2,

which is the proposition of the lemma in the special case m = 1. As shown before, the cases
2 ≤ m ≤ 2n+ 1 follow from this result. ut
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Lemma 5 Consider a function f : Ω ⊆ Rm → R, m ≥ 2 of the form

f(x1, . . . , xm) =
(a0 + a1x1 + · · ·+ amxm)(b0 + b1x1 + · · ·+ bmxm)

(c0 + c1x1 + · · ·+ cmxm)2
,

where aj , bj , cj ∈ R, j = 0, . . . ,m and a21 + · · ·+a2m 6= 0, b21 + · · ·+b2m 6= 0, c21 + · · ·+c2m 6= 0,
and where Ω ⊆ Rm denotes an open domain in which c0 + c1x1 + · · · + cmxm 6= 0. Let
(x∗1, . . . , x∗m) ∈ Ω be a critical point of f , i.e.,

∂

∂xi
f(x1, . . . , xm)

∣∣∣∣
(x1,...,xm)=(x∗1,...,x∗m)

= 0, i = 1, . . . ,m.

Then it holds

f(x∗1, . . . , x∗m) = 0. (79)

Proof We first prove the lemma in the special case m = 2 and then show that the general

case is a direct consequence. Let m = 2. We consider the two cases (i) det

[
a1 b1
a2 b2

]
6= 0 and

(ii) det

[
a1 b1
a2 b2

]
= 0.

In the case (i) we apply the variable transformation (x1, x2) 7→ (u1, u2) = (a0 + a1x1 +
a2x2, b0 + b1x1 + b2x2) whose Jacobian determinant is a constant 6= 0. Thereby f is trans-
planted to a function f̃ of the form

f̃(u1, u2) =
u1u2

(c̃0 + c̃1u1 + c̃2u2)2
, c̃21 + c̃22 6= 0,

whose derivatives are given by

∂

∂u1
f̃(u1, u2) =

u2(c̃0 − c̃1u1 + c̃2u2)

(c̃0 + c̃1u1 + c̃2u2)3
,

∂

∂u2
f̃(u1, u2) =

u1(c̃0 + c̃1u1 − c̃2u2)

(c̃0 + c̃1u1 + c̃2u2)3
.

A straightforward calculation shows that the only solution (u1, u2) of u2(c̃0 − c̃1u1 + c̃2u2) = 0,
u1(c̃0 + c̃1u1 − c̃2u2) = 0,

c̃0 + c̃1u1 + c̃2u2 6= 0
(80)

is given by (u1, u2) = (0, 0) provided that c̃0 6= 0. If c̃0 = 0 then (80) has no solution. Since
a critical point (x∗1, x∗2) ∈ Ω of f is transformed into a critical point (u∗1, u∗2) of f̃ , i.e.,
to a solution of (80), it follows that (x∗1, x∗2) maps to (u∗1, u∗2) = (0, 0) and thus

f(x∗1, x∗2) = f̃(u∗1, u∗2) = f̃(0, 0) = 0.

In the case (ii) there exists a variable transformation (x1, x2) 7→ (u1, u2) with constant
Jacobian determinant 6= 0 such that f is transplanted to a function f̃ of the form

f̃(u1, u2) =
u1(b̃0 + b̃1u1)

(c̃0 + c̃1u1 + c̃2u2)2
, b̃1 6= 0, c̃21 + c̃22 6= 0.

The derivatives of f̃ are now given by

∂

∂u1
f̃(u1, u2) =

b̃0(c̃0 − c̃1u1 + c̃2u2) + 2b̃1u1(c̃0 + c̃2u2)

(c̃0 + c̃1u1 + c̃2u2)3
,

∂

∂u2
f̃(u1, u2) =

−2c̃2u1(b̃0 + b̃1u1)

(c̃0 + c̃1u1 + c̃2u2)3
.
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A straightforward calculation shows that b̃0(c̃0 − c̃1u1 + c̃2u2) + 2b̃1u1(c̃0 + c̃2u2) = 0,

c̃2u1(b̃0 + b̃1u1) = 0,
c̃0 + c̃1u1 + c̃2u2 6= 0

(81)

has no solution so that in the case (ii) f does not have a critical point in Ω.
For the general case m ≥ 2 write

f(x1, . . . , xm) =
(A0(x3, . . . , xm) + a1x1 + a2x2)(B0(x3, . . . , xm) + b1x1 + b2x2)

(C0(x3, . . . , xm) + c1x1 + c2x2)2
,

where A0(x3, . . . , xm) = a0 + a3x3 + · · · + amxm and B0, C0 are defined analogously. If
(x∗1, . . . , x∗m) ∈ Ω is a critical point of f then (x∗1, x∗2) is a critical point of g defined by

g(x1, x2) = f(x1, x2, x∗3, . . . , x∗m) =
(A∗0 + a1x1 + a2x2)(B∗0 + b1x1 + b2x2)

(C∗0 + c1x1 + c2x2)2
, (82)

where A∗0 = A0(x∗3, . . . , x∗m) and B∗0, C∗0 are defined similarly. By applying the special
case m = 2 of the lemma to (82) it follows g(x∗1, x∗2) = 0 and thus (79), i.e., that the
lemma holds in the general case m ≥ 2 as well. ut

A.5 The General Case

Let arbitrary m ≥ 1 and n ≥ 2m+ 1 be given. If n = 2m+ 1 then Proposition 3 holds, this
was proven in Subsection A.4. So let us assume n ≥ 2m+ 2. For given D2 ∈ R(n−m)×m and
fixed j we apply Proposition 2 and obtain W ∈ R(n−m)×m and Γ2 = diag(γm+1, . . . , γ2m),
such that

kj = d̂j − λjW (Γ2 − λjIm)−1WT (dj − d̂j) (83)

holds, where dj denotes the j-th column of D2, d̂j = λjΛ
−1
2 d̂j , and kj is the unique solution

of the equation (the j-th column of the Sylvester equation (22))

PΛ2kj − λjkj + λj(In−m − P )dj = 0 (84)

with P = WWT .
Let ñ = n + 1, m̃ = m + 1. We form the matrix D̃2 = [D2 d̃m̃] ∈ R(ñ−m̃)×m̃ by

augmenting D2 with some suitable column vector d̃m̃ ∈ Rñ−m̃ yet to be chosen. We choose

λ̃m̃ ∈ (λm, λm+1) arbitrarily and define Λ̃1 = diag(λ1, . . . , λm, λ̃m̃) and ˆ̃D2 = Λ−1
2 D̃2Λ̃1. If

we apply Proposition 2 with n, m, D2, D̂2 respectively replaced by ñ, m̃, D̃2, ˆ̃D2 (but with
Λ2 left unchanged) we obtain W̃ ∈ R(ñ−m̃)×m̃ and Γ̃2 = diag(γ̃m̃+1, . . . , γ̃2m̃) such that

k̃j = d̂j − λjW̃ (Γ̃2 − λjIm̃)−1W̃T (dj − d̂j) (85)

holds, where now k̃j is the unique solution of the equation

P̃Λ2k̃j − λj k̃j + λj(Iñ−m̃ − P̃ )dj = 0 (86)

with P̃ = W̃W̃T . Note that here dj , d̂j , and λj are still the same as in (83), (84).

Our goal is to choose the vector d̃m̃ ∈ Rñ−m̃ in such a way that it holds k̃j = kj . If we
assume that this is always possible and that it has already been proved that Proposition 3,
eq. (47) is valid for n, m replaced by ñ, m̃, respectively, then due to kj = k̃j the estimate
(47) is valid for the particular kj from (83), i.e. in this particular case also for the original
values of n and m. (Note that λm+1 occurring in (47) denotes the smallest eigenvalue of Λ2

which remains unchanged in the transition n → ñ, m → m̃.) The argument above applies
to any D2 ∈ R(n−m)×m and index j and associated kj . Therefore, if (47) holds for n, m
replaced by ñ, m̃, respectively, then (47) holds also for the original values of n, m in general.
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It is clear that this argument can be iterated. After ` = n − 2m − 1 ≥ 1 iterations we
arrive at n→ ˜̃n = n+ `, m→ ˜̃m = m+ ` with ˜̃n = n+(n−2m−1) = 2(m+(n−2m−1))+
1 = 2˜̃n + 1, i.e., at the special case for which Proposition 3 has already been established,
cf. Subsection A.4. Going backwards (˜̃n→ n, ˜̃m→ m) it follows that Proposition 3 is valid
for our originally chosen values of m ≥ 1 and n ≥ 2m+ 2.

It remains to prove that the vector d̃m̃ ∈ Rñ−m̃ can always be chosen in such a way
that it holds k̃ = k, that is, such that kj is the solution of equation (86), which depends on

d̃m̃ via P̃ . We compute (cf. the proof of Proposition 2)

P̃Λ2kj − λjkj = (P̃Λ2 − λjIn−m)
(
d̂j − λjW (Γ2 − λjIm)−1WT (dj − d̂j)

)
= λj P̃ dj − λj d̂j − λjW̃W̃TΛ2W (Γ2 − λjIm)−1WT (dj − d̂j)

+λ2jW (Γ2 − λjIm)−1WT (dj − d̂j), (87)

from which it follows that kj is the solution of (86) if

W̃W̃TΛ2W (Γ2 − λjIm)−1WT (dj − d̂j) = λjW (Γ2 − λjIm)−1WT (dj − d̂j).

Recalling that this equation holds with W̃ replaced by W , kj solves (86) also when

(P̃ − P )Λ2W (Γ2 − λjIm)−1WT (dj − d̂j) = 0, (88)

where P = WWT , P̃ = W̃W̃T . Note that P is the projection of Rn−m onto the space
spanned by D2 − D̂2, whereas P̃ is the projection of Rñ−m̃ = Rn−m onto the larger space

spanned by D̃2 − ˆ̃D2 = [D2 − D̂2 d̃m̃ − ˆ̃
dm̃]. If follows that for (88) to hold, we have

to choose d̃m̃ in such a way that d̃m̃ − ˆ̃
dm̃ = (In−m − λ̃m̃Λ−1

2 )d̃m̃ is orthogonal both to

Λ2W (Γ2 − λjIm)−1WT (dj − d̂j) and to the space spanned by D2 − D̂2, which clearly can
be realized because

(dimension of the space spanned by D2 − D̂2) + 1 = m+ 1 < n−m

if n ≥ 2m+ 2.
This completes the proof of Proposition 3 and thus also of Theorem 1.
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